“Ménage à trois”: the presence/absence of thyme shapes the mutualistic interaction between the host plant Medicago truncatula (Fabaceae) and its symbiotic bacterium Sinorhizobium meliloti
نویسندگان
چکیده
The long-term maintenance of specialized mutualisms remains an evolutionary puzzle. Recent focus has been on factors governing the stability of these mutualisms, including sanctions by the host, partner choice, and coevolutionary constraint, that is, the genetic correlation (r(G)) between fitness of both partners. So far these studies have been typically carried out in a single environment. Here, we ask if the genetic correlation between fitness of the host plant Medicago truncatula (Fabaceae) and its bacterial symbiont Sinorhizobium meliloti is affected by the presence/absence of a monoterpene (carvacrol) leached into the soil by Thymus vulgaris-a common plant of the Mediterranean vegetation, often co-occuring with Medicago. We show that the presence of carvacrol in the soil dramatically affects fitness of the rhizobial partner and increases the magnitude of r(G) between plant and rhizobia fitness (r(G) = 0.02 ± 0.05 vs. r(G) = 0.57 ± 0.02). This finding emphasizes the importance of heterogeneity in the biotic environment for understanding the evolution of species interactions.
منابع مشابه
Single-plant, sterile microcosms for nodulation and growth of the legume plant Medicago truncatula with the rhizobial symbiont Sinorhizobium meliloti.
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructi...
متن کاملExpression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic i...
متن کاملFunction of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight
UNLABELLED The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that c...
متن کاملNPR1 Protein Regulates Pathogenic and Symbiotic Interactions between Rhizobium and Legumes and Non-Legumes
BACKGROUND Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs) produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when...
متن کاملInterplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula
Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was...
متن کامل